首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   4篇
  国内免费   2篇
测绘学   5篇
大气科学   6篇
地球物理   68篇
地质学   47篇
海洋学   94篇
天文学   27篇
综合类   1篇
自然地理   9篇
  2021年   2篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   13篇
  2012年   3篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   10篇
  2007年   8篇
  2006年   8篇
  2005年   11篇
  2004年   6篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   16篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
排序方式: 共有257条查询结果,搜索用时 46 毫秒
51.
The Benjamin River apatite prospect in northern New Brunswick, Canada, is hosted by the Late Silurian Dickie Brook plutonic complex, which is made up of intrusive units represented by monzogranite, diorite and gabbro. The IOA ores, composed mainly of apatite, augite, and magnetite at Benjamin River form pegmatitic pods and lenses in the host igneous rocks, the largest of which is 100 m long and 10–20 m wide in the diorite and gabbro units. In this study, 28 IOA ore and rock samples were collected from the diorite and gabbro units. Mineralogical observations show that the apatite–augite–magnetite ores are variable in the amounts of apatite, augite, and magnetite and are associated with minor amounts of epidote‐group minerals (allanite, REE‐rich epidote and epidte) and trace amounts of albite, titanite, ilmenite, titanomagnetite, pyrite, chlorite, calcite, and quartz. Apatite and augite grains contain small anhydrite inclusions. This suggests that the magma that crystallized apatite and augite had high oxygen fugacity. In back scattered electron (BSE) images, apatite grains in the ores have two zones of different appearance: (i) primary REE‐rich zone; and (ii) porous REE‐poor zone. The porous REE‐poor zones mainly appear in rims and/or inside of the apatite grains, in addition to the presence of apatite grains which totally consist of a porous REE‐poor apatite. This porous REE‐poor apatite is characterized by low REE (<0.84 wt%), Si (<0.28 wt%), and Cl (<0.17 wt%) contents. Epidote‐group minerals mainly occur in grain boundary between the porous REE‐poor apatite and augite. These indicate that REE leached from primary REE‐rich apatite crystallized as allanite and REE‐rich epidote. Magnetite in the ores often occurs as veinlets that cut apatite grains or as anhedral grains that replace a part of augite. These textures suggest that magnetite crystallized in the late stage. Pyrite veins occur in the ores, including a large amount of quartz and calcite veins. Pyrite veins mainly occur with quartz veins in augite. These textures indicate pyrite veins are the latest phase. Apatite–augite–magnetite ore, gabbro–quartz diorite and feldspar dike collected from the Benjamin River prospect contain dirty pure albite (Ab98Or2–Ab100) under the microscope. The feldspar dikes mainly consist of dirty pure albite. Occurrences of the dirty pure albite suggest remarkable albitization (sodic alteration) of original plagioclase (An25.3–An60 in Pilote et al., 2012) associating with intrusion of monzogranite into gabbro and diorite. SO42? bearing magma crystallized primary REE‐rich apatite, augite and anhydrite reacted with Fe in the sodic fluids, which result in oxidation of Fe2+ and release of S2? into the sodic fluids. REE, Ca and Fe from primary REE‐rich apatite, augite and plagioclase altered by the sodic fluids were released into the fluids. Then Fe3+ in the sodic fluids precipitated as Fe oxides and epidote‐group minerals in apatite–augite–magnetite ores. Finally, residual S2? in sodic fluids crystallized as latest pyrite veins. In conclusion, mineralization in Benjamin River IOA prospect are divided into four stages: (1) oxidized magmatic stage that crystallized apatite, augite and anhydrite; (2) sodic metasomatic stage accompanying alteration of magmatic minerals; (3) oxidized fluid stage (magnetite–epidote group minerals mineralization); and (4) reduced fluid stage (pyrite mineralization).  相似文献   
52.
53.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
54.
In lotic systems, the hyporheic zone has been suggested as a potential refuge for aquatic organisms during disturbances (hyporheic refuge hypothesis). However, the supporting evidence is unclear, especially regarding the survival of hyporheic refugees and their contribution to the recovery of post-disturbance populations. Moreover, few studies have focused on the importance of the hyporheic refuge for aquatic vertebrates such as fish. In this study, we present evidence that the hyporheic zone acts as a refuge for a small benthic fish (Cobitis shikokuensis) following surface drying in an intermittent river. We examined its survival during and recolonization after dry periods by direct hyporheic sampling and mark-and-recapture surveys. When the streambed dried, hyporheic sampling was conducted 58 times across 33 locations in the intermittent reach and 31 individuals of C. shikokuensis were captured from extracted hyporheic water. Mark-and-recapture surveys revealed that recolonizers after re-wetting included C. shikokuensis individuals that had survived dry periods in the hyporheic refuge. The condition factor of C. shikokuensis significantly declined after dry periods, suggesting that most recolonizers suffered from physiological stress, probably within the hyporheic refuge. These results clearly support the long-debated, hyporheic refuge hypothesis, and provide a striking example of the critical role of the hyporheic zone in population maintenance of lotic organisms.  相似文献   
55.
Location-Based Services (LBS), an emerging new business based on smartphone and mobile networks, are becoming more and more popular. Most of these LBSs, however, only offer non-seamless indoor/outdoor applications and simple applications without giving stakeholders the chance to play an active role. Our specific aim is to solve these issues. This paper presents concepts to solve these issues by expanding the Open Location Services Interface Standard (OpenLS) to allow seamless indoor/outdoor positioning and to extend the content of the services to include information recommended by stakeholders.  相似文献   
56.
Location-Based Services (LBS),an emerging new business based on smartphone and mobile networks,are becoming more and more popular.Most of these LBSs,however,only offer non-seamless indoor/outdoor applications and simple applications without giving stakeholders the chance to play an active role.Our specific aim is to solve these issues.This paper presents concepts to solve these issues by expanding the Open Location Services Interface Standard (OpenLS) to allow seamless indoor/outdoor positioning and to extend the content of the services to include information recommended by stakeholders.  相似文献   
57.
Nickel plays a central role as an enzyme co-factor in the metabolism of methanogenic Archaea. Methanogens can fractionate Ni isotopes during assimilation, opening the possibility of using the stable isotopic composition of Ni as a biomarker. However, other sources of Ni isotopic variations need to be evaluated before one can establish Ni isotopes as an unambiguous tracer of methanogenesis in the rock record. Equilibrium exchange of Ni between the different species present in the ocean is a potential source of isotopic fractionation. Through controlled laboratory experiments and theoretical calculations, we quantify equilibrium Ni isotope fractionation between different species relevant to the modern and ancient ocean: Ni(H2O)62+, Ni(H2O)182+, NiOH(H2O)5+, Ni(OH)2(H2O)4, NiCl(H2O)5+, cis-NiCl2(H2O)4, trans-NiCl2(H2O)4, NiHS(H2O)5+, Ni(HS)2(H2O)4, NiSO4(H2O)4, NiHCO3(H2O)4+, NiCO3(H2O)4, and organic ligands (crown ether and oxalic acid). The magnitude of ligand-controlled Ni isotopic fractionation, approximately 1.25‰/amu (2.5‰ for the 60Ni/58Ni ratio), is similar to that previously measured in cultures of methanogenic Archaea.  相似文献   
58.
The reservoir architecture of methane hydrate (MH) bearing turbidite channels in the eastern Nankai Trough, offshore Japan is evaluated using a combination of 3-D seismic and well data. On the 3-D seismic section, the MH-bearing turbidite channels correspond to complex patterns of strong seismic reflectors, which show the 3-D internal architecture of the channel complex. A seismic-sequence stratigraphic analysis reveals that the channel complex can be roughly classified into three different stages of depositional sequence (upper, middle, and lower). Each depositional sequence results in a different depositional system that primarily controls the reservoir architecture of the turbidite channels. To construct a 3-D facies model, the stacking patterns of the turbidite channels are interpreted, and the reservoir heterogeneities of MH-bearing sediments are discussed. The identified channels at the upper sequence around the β1 well exhibit low-sinuosity channels consisting of various channel widths that range from tens to several hundreds of meters. Paleo-current flow directions of the turbidite channels are typically oriented along the north-northeast-to-south-southwest direction. High-amplitude patterns were identified above the channels along the north-to-south and north-northeast-to-south-southeast directions. These roughly coincide with the paleo-current flow of the turbidite channels. An interval velocity using high-density velocity analysis shows that velocity anomalies (>2000 m/s) are found on the northeastern side of the turbidite channels. The depositional stage of the northeastern side of the turbidite channels exhibits slightly older sediment stages than the depositional stages of the remaining channels. Hence, the velocity anomalies of the northeastern side of the channels are related to the different stages of sediment supply, and this may lead to the different reservoir architectures of the turbidite channels.  相似文献   
59.
We assess validity of a Gaussian error assumption, the basic assumption in data assimilation theory, and propose two kinds of constraints regarding non-Gaussian statistics. In the mixed water region (MWR) off the east coast of Japan exhibiting complicated frontal structures, a probability density function (PDF) of subsurface temperature shows double peaks corresponding to the Kuroshio and Oyashio waters. The complicated frontal structures characterized by the temperature PDF sometimes cause large innovations, bringing about a non-Gaussianity of errors. It is also revealed that assimilated results with a standard three-dimensional variational (3DVAR) scheme have some issues in MWR, arising from the non-Gaussianity of errors. The Oyashio water sometimes becomes unrealistically cold. The double peaks seen in the observed temperature PDF are too smoothed. To improve the assimilated field in MWR, we introduce two kinds of constraints, J c1 and J c2, which model the observed temperature PDF. The constraint J c1 prevents the unrealistically cold Oyashio water, and J c2 intends to reproduce the double peaks. The assimilated fields are significantly improved by using these constraints. The constraint J c1 effectively reduces the unrealistically cold Oyashio water. The double peaks in the observed temperature PDF are successfully reproduced by J c2. In addition, not only subsurface temperature but also whole level temperature and salinity (T–S) fields are improved by adopting J c1 and J c2 to a multivariate 3DVAR scheme with vertical coupled T–S empirical orthogonal function modes.  相似文献   
60.
The two drill holes, which penetrated sub‐horizontal rare earth element (REE) ore units at the Nechalacho REE in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify the enrichment mechanism of the high‐field‐strength elements (HFSE: Zr, Nb and REE). The REE ore units occur in the albitized and potassic altered miaskitic syenite. Zircon is the most common REE mineral in the REE ore units, and is divided into five types as follows: Type‐1 zircon occurs as discrete grains in phlogopite, and has a chemical character similar to igneous zircon. Type‐2 zircon consists of a porous HREE‐rich core and LREE–Nb–F‐rich rim. Enrichment of F in the rim of type‐2 zircon suggests that F was related to the enrichment of HFSE. The core of type‐2 zircon is regarded to be magmatic and the rim to be hydrothermal in origin. Type‐3 zircon is characterized by euhedral to anhedral crystals, which occur in a complex intergrowth with REE fluorocarbonates. Type‐3 zircon has high REE, Nb and F contents. Type‐4 zircon consists of porous‐core and ‐rim, but their chemical compositions are similar to each other. This zircon is a subhedral crystal rimmed by fergusonite. Type‐5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircon grains are filled by fergusonite. Type‐4 and type‐5 zircon grains have low REE, Nb and F contents. Type‐1 zircon is only included in one unit, which is less hydrothermally altered and mineralized. Type‐2 and type‐3 zircon grains mainly occur in the shallow units, while those of type‐4 and type‐5 are found in the deep units. The deep units have high HFSE contents and strongly altered mineral textures (type‐4 and type‐5) compared to the shallow units. Occurrences of these five types of zircon are different according to the depth and degree of the hydrothermal alteration by solutions rich in F and CO3, which permit a model for the evolution of the zircon crystallization in the Nechalacho REE deposit as follows: (i) type‐1 (discrete magmatic zircon) is formed in miaskitic syenite. (ii) LREE–Nb–F‐rich hydrothermal zircon formed around HREE‐rich magmatic zircon (type‐2). (iii) type‐3 zircon crystallized through the F and CO3‐rich hydrothermal alteration of type‐2 zircon which formed the complex intergrowth with REE fluorocarbonates; (iv) the CO3‐rich hydrothermal fluid corroded type‐3, forming REE–Nb‐poor zircon (type‐4). Niobium and REE were no longer stable in the zircon structure and crystallized as fergusonite around the REE–Nb‐leached zircon (type‐4); (v) type‐5 zircon is formed by the more CO3‐rich hydrothermal alteration of type‐4 zircon, suggested by the fact that type‐4 and type‐5 zircon grains are often included in ankerite. Type‐3 to type‐5 zircon grains at the Nechalacho REE deposit were continuously formed by leaching and/or dissolution of type‐2 zircon in the presence of F‐ and/or CO3‐rich hydrothermal fluid. These mineral associations indicate that three representative hydrothermal stages were present and related to HFSE enrichment in the Nechalacho REE deposit: (i) F‐rich hydrothermal stage caused the crystallization of REE–Nb‐rich zircon (type‐2 rim and type‐3), with abundant formation of phlogopite and fluorite; (ii) F‐ and CO3‐rich hydrothermal stage led to the replacement of a part of REE–Nb–F‐rich zircon by REE fluorocarbonate; and (iii) CO3‐rich hydrothermal stage resulted in crystallization of the REE–Nb–F‐poor zircon and fergusonite, with ankerite. REE and Nb in hydrothermal fluid at the Nechalacho REE deposit were finally concentrated into fergusonite by way of REE–Nb–F‐rich zircon in the hydrothermally altered units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号